22 research outputs found

    Galling wear detection and measurement in sheet metal forming

    Get PDF
    Galling wear of sheet metal stamping tooling is an expensive issue for sheet metal forming industries. Forming of high strength steels, particularly in the automotive industry, has led to accelerated tool wear rates. These wear rates lead to product quality and die maintenance issues, making galling wear an expensive issue for automotive manufacturers and the sheet metal forming industries in general. Process monitoring allows for the continuous monitoring of tooling condition so that wear development can be detected. The aim of this investigation was to develop an in-depth understanding of the relationship between punch force variation and wear for implementation in future process monitoring regimes. To achieve this aim, the effect of wear and other friction influencing factors on punch force signatures were investigated. This required the development of an accurate method for quantifying galling wear severity so that the relationship between galling wear progression and punch force signature variation could be quantified. Finally, the specific effects of wear and friction conditions on the punch force signatures were examined. An initial investigation using a statistical pattern recognition technique was conducted on stamping force data to determine if the presence of galling wear on press tooling effected punch force variation. Galling wear on tooling, changes in lubrication type, and changes in blank holder pressure were all found to effect variation in punch force signatures shape. A new galling wear severity measurement methodology was developed based on wavelet analysis of 2D surface roughness profiles that accurately provided an indication of the location and severity of galling wear damage. Using the new method for quantifying galling wear severity in the relationship between punch force variation and galling wear progression was investigated, and a strong linear relationship was found. Finally, two prominent vii forms of punch force signature shape variation were linked to friction conditions driven by wear, lubrication, and blank holder pressure. This work describes and quantifies the relationship between galling wear and punch force signature variation. A new methodology for accurate measurement of galling wear severity is presented. Finally, specific forms of punch force signature variation are linked to different friction conditions. These results are critical for future implementation of punch force based galling wear process monitoring and a significant reduction in costs for the metal forming industries

    Using stamping punch force variation for the identification of changes in lubrication and wear mechanism

    Get PDF
    The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    AUTOMATED IDENTIFICATION OF TOOL WEAR IN SHEET METAL STAMPING

    No full text

    A new methodology for measuring galling wear severity in high strength steels

    Get PDF
    With the increased usage of Advanced High Strength Steels, galling wear has become a significant challenge for sheet metal stamping industries. Galling, in particular, can have a large economic impact due to the high costs and lost productivity associated with manual monitoring, refinishing/resurfacing damaged tooling and formed parts, and the need to apply expensive treatments or coatings to tool surfaces. This has led to a push for automated galling wear detection systems. However, developing such systems requires an accurate measurement of galling wear severity that can be easily implemented in industrial situations. Parameters used for measuring galling wear are often difficult to collect in large industrial style trials, and can be inaccurate as they are not targeted towards characterising the localised features associated with galling wear damage. In this study, a new galling wear characterisation and measurement methodology is introduced that accurately measures galling wear severity by targeting the localised features on sheet metal parts. This methodology involves calculating Discrete Wavelet Transform detail coefficients of 2D surface profiles. A case study on a series of deep drawn channel parts demonstrates the accuracy of the Discrete Wavelet Transform methodology when compared to visual assessment of galling wear severity. Based on comparison to visual assessment the presented Discrete Wavelet Transform galling wear measurement methodology outperforms other commonly used wear measures. The methodology provides a targeted, repeatable and non-subjective measure of galling wear severity. The specific outcome of this work provides an important tool for research into galling wear monitoring and detection systems in sheet metal forming, and the study of galling wear and its prevention in general.This research was supported by an Australian Research Council (Australia) Linkage Project (LP120100239)

    Extending light-weighting and mass-production of ultra high strength steels via condition-based maintenance

    Full text link
    The use of ultra high strength steels (UHSS) in the automotive industry presents a significant opportunity for continued vehicle light-weighting, due to possible strength-to-weight improvements of three to four times that of conventional sheet steel grades. This performance benefit is achievable whist maintaining most of the advantages of low-cost mass-production associated with the cold stamping of sheet steel for automotive body components. However, the introduction of UHSS can result in significantly increased wear of the stamping tools, which is difficult to predict at the design stage and can lead to unexpected process failure during mass-production. Therefore, there is a need to be able to monitor and predict the onset of severe wear, such that the best course of condition-based maintenance can be scheduled and unscheduled stoppages due to tool wear eradicated. This paper describes a novel active monitoring system that is being developed by researchers at Deakin University, The Australian National University and Ford Motor Company, Asia Pacific and Africa. The aim of the active monitoring system is to detect the initial onset of a change of state, such as wear, through the measurement of variables such as punch force and audio signals. A semi-industrial stamping process, using a progressive die setup and high strength steel sheet with hardened tool steel tooling, is the experimental basis for the initial model and system development

    A Plasmodium falciparum bromodomain protein regulates invasion gene expression

    Get PDF
    During red-blood-cell-stage infection of Plasmodium falciparum, the parasite undergoes repeated rounds of replication, egress, and invasion. Erythrocyte invasion involves specific interactions between host cell receptors and parasite ligands and coordinated expression of genes specific to this step of the life cycle. We show that a parasite-specific bromodomain protein, PfBDP1, binds to chromatin at transcriptional start sites of invasion-related genes and directly controls their expression. Conditional PfBDP1 knockdown causes a dramatic defect in parasite invasion and growth and results in transcriptional downregulation of multiple invasion-related genes at a time point critical for invasion. Conversely, PfBDP1 overexpression enhances expression of these same invasion-related genes. PfBDP1 binds to acetylated histone H3 and a second bromodomain protein, PfBDP2, suggesting a potential mechanism for gene recognition and control. Collectively, these findings show that PfBDP1 critically coordinates expression of invasion genes and indicate that targeting PfBDP1 could be an invaluable tool in malaria eradication

    Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum

    Get PDF
    SummaryThe malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum
    corecore